A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2).

نویسندگان

  • E Takano
  • R Chakraburtty
  • T Nihira
  • Y Yamada
  • M J Bibb
چکیده

Many streptomycetes produce extracellular gamma-butyrolactones. In several cases, these have been shown to act as signals for the onset of antibiotic production. Synthesis of these molecules appears to require a member of the AfsA family of proteins (AfsA is required for A-factor synthesis of the gamma-butyrolactone A-factor and consequently for streptomycin production in Streptomyces griseus). An afsA homologue, scbA, was identified in Streptomyces coelicolor A3(2) and was found to lie adjacent to a divergently transcribed gene, scbR, which encodes a gamma-butyrolactone binding protein. Gel retardation assays and DNase I footprinting studies revealed DNA binding sites for ScbR at - 4 to - 33 nt with respect to the scbA transcriptional start site, and at - 42 to - 68 nt with respect to the scbR transcriptional start site. Addition of the gamma-butyrolactone SCB1 of S. coelicolor resulted in loss of the DNA-binding ability of ScbR. A scbA mutant produced no gamma-butyrolactones, yet overproduced two antibiotics, actinorhodin (Act) and undecylprodigiosin (Red), whereas a deletion mutant of scbR also failed to make gamma-butyrolactones and showed delayed Red production. These phenotypes differ markedly from those expected by analogy with the S. griseus A-factor system. Furthermore, transcription of scbR increased, and that of scbA was abolished, in an scbR mutant, indicating that ScbR represses its own expression while activating that of scbA. In the scbA mutant, expression of both genes was greatly reduced. Addition of SCB1 to the scbA mutant induced transcription of scbR, but did not restore scbA expression, indicating that the deficiency in scbA transcription in the scbA mutant is not solely due to the inability to produce SCB1, and that ScbA is a positive autoregulator in addition to being required for gamma-butyrolactone production. Overall, these results indicate a complex mechanism for gamma-butyrolactone-mediated regulation of antibiotic biosynthesis in S. coelicolor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of two additional signaling molecules in Streptomyces coelicolor and the development of a butyrolactone-specific reporter system.

gamma-Butyrolactone bacterial hormones regulate antibiotic production and morphological differentiation in Streptomyces species. One gamma-butyrolactone, SCB1, has been previously characterized in Streptomyces coelicolor. Here we report the characterization of two additional gamma-butyrolactones, named SCB2 (2-[1'-hydroxyoctyl]-3-hydroxymethylbutanolide) and SCB3 (2-[1'-hydroxy-6'-methyloctyl]-...

متن کامل

A Bistable Gene Switch for Antibiotic Biosynthesis: The Butyrolactone Regulon in Streptomyces coelicolor

Many microorganisms, including bacteria of the class Streptomycetes, produce various secondary metabolites including antibiotics to gain a competitive advantage in their natural habitat. The production of these compounds is highly coordinated in a population to expedite accumulation to an effective concentration. Furthermore, as antibiotics are often toxic even to their producers, a coordinated...

متن کامل

Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis

cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR ...

متن کامل

2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining.

All of the genetic elements necessary for the production of the antibiotic methylenomycin (Mm) and its regulation are contained within the 22-kb mmy-mmf gene cluster, which is located on the 356-kb linear plasmid SCP1 of Streptomyces coelicolor A3(2). A putative operon of 3 genes within this gene cluster, mmfLHP, was proposed to direct the biosynthesis of an A-factor-like signaling molecule, wh...

متن کامل

Angucyclines as signals modulate the behaviors of Streptomyces coelicolor.

The angucycline antibiotic jadomycin B (JdB) produced by Streptomyces venezuelae has been found here to induce complex survival responses in Streptomyces coelicolor at subinhibitory concentration. The receptor for JdB was identified as a "pseudo" gamma-butyrolactone receptor, ScbR2, which was shown to bind two previously unidentified target promoters, those of redD (redDp) and adpA (adpAp), thu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2001